Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evolutionary Neural Architecture Search for Image Restoration (1812.05866v2)

Published 14 Dec 2018 in cs.NE

Abstract: Convolutional neural network (CNN) architectures have traditionally been explored by human experts in a manual search process that is time-consuming and ineffectively explores the massive space of potential solutions. Neural architecture search (NAS) methods automatically search the space of neural network hyperparameters in order to find optimal task-specific architectures. NAS methods have discovered CNN architectures that achieve state-of-the-art performance in image classification among other tasks, however the application of NAS to image-to-image regression problems such as image restoration is sparse. This paper proposes a NAS method that performs computationally efficient evolutionary search of a minimally constrained network architecture search space. The performance of architectures discovered by the proposed method is evaluated on a variety of image restoration tasks applied to the ImageNet64x64 dataset, and compared with human-engineered CNN architectures. The best neural architectures discovered using only 2 GPU-hours of evolutionary search exhibit comparable performance to the human-engineered baseline architecture.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.