Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Geometrical Stem Detection from Image Data for Precision Agriculture (1812.05415v1)

Published 13 Dec 2018 in cs.RO and cs.CV

Abstract: High efficiency in precision farming depends on accurate tools to perform weed detection and mapping of crops. This allows for precise removal of harmful weeds with a lower amount of pesticides, as well as increase of the harvest's yield by providing the farmer with valuable information. In this paper, we address the problem of fully automatic stem detection from image data for this purpose. Our approach runs on mobile agricultural robots taking RGB images. After processing the images to obtain a vegetation mask, our approach separates each plant into its individual leaves and later estimates a precise stem position. This allows an upstream mapping algorithm to add the high-resolution stem positions as a semantic aggregate to the global map of the robot, which can be used for weeding and for analyzing crop statistics. We implemented our approach and thoroughly tested it on three different datasets with vegetation masks and stem position ground truth. The experiments presented in this paper conclude that our module is able to detect leaves and estimate the stem's position at a rate of 56 Hz on a single CPU. We furthermore provide the software to the community.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube