Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modeling Multi-speaker Latent Space to Improve Neural TTS: Quick Enrolling New Speaker and Enhancing Premium Voice (1812.05253v4)

Published 13 Dec 2018 in eess.AS, cs.CL, and cs.SD

Abstract: Neural TTS has shown it can generate high quality synthesized speech. In this paper, we investigate the multi-speaker latent space to improve neural TTS for adapting the system to new speakers with only several minutes of speech or enhancing a premium voice by utilizing the data from other speakers for richer contextual coverage and better generalization. A multi-speaker neural TTS model is built with the embedded speaker information in both spectral and speaker latent space. The experimental results show that, with less than 5 minutes of training data from a new speaker, the new model can achieve an MOS score of 4.16 in naturalness and 4.64 in speaker similarity close to human recordings (4.74). For a well-trained premium voice, we can achieve an MOS score of 4.5 for out-of-domain texts, which is comparable to an MOS of 4.58 for professional recordings, and significantly outperforms single speaker result of 4.28.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.