Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Massively scalable Sinkhorn distances via the Nyström method (1812.05189v3)

Published 12 Dec 2018 in stat.ML, cs.DS, cs.LG, and math.OC

Abstract: The Sinkhorn "distance", a variant of the Wasserstein distance with entropic regularization, is an increasingly popular tool in machine learning and statistical inference. However, the time and memory requirements of standard algorithms for computing this distance grow quadratically with the size of the data, making them prohibitively expensive on massive data sets. In this work, we show that this challenge is surprisingly easy to circumvent: combining two simple techniques---the Nystr\"om method and Sinkhorn scaling---provably yields an accurate approximation of the Sinkhorn distance with significantly lower time and memory requirements than other approaches. We prove our results via new, explicit analyses of the Nystr\"om method and of the stability properties of Sinkhorn scaling. We validate our claims experimentally by showing that our approach easily computes Sinkhorn distances on data sets hundreds of times larger than can be handled by other techniques.

Citations (103)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.