Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Image Segmentation Based on Multiscale Fast Spectral Clustering (1812.04816v1)

Published 12 Dec 2018 in eess.IV and cs.CV

Abstract: In recent years, spectral clustering has become one of the most popular clustering algorithms for image segmentation. However, it has restricted applicability to large-scale images due to its high computational complexity. In this paper, we first propose a novel algorithm called Fast Spectral Clustering based on quad-tree decomposition. The algorithm focuses on the spectral clustering at superpixel level and its computational complexity is O(nlogn) + O(m) + O(m3/2); its memory cost is O(m), where n and m are the numbers of pixels and the superpixels of a image. Then we propose Multiscale Fast Spectral Clustering by improving Fast Spectral Clustering, which is based on the hierarchical structure of the quad-tree. The computational complexity of Multiscale Fast Spectral Clustering is O(nlogn) and its memory cost is O(m). Extensive experiments on real large-scale images demonstrate that Multiscale Fast Spectral Clustering outperforms Normalized cut in terms of lower computational complexity and memory cost, with comparable clustering accuracy.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.