Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Von Mises-Fisher Loss for Training Sequence to Sequence Models with Continuous Outputs (1812.04616v3)

Published 10 Dec 2018 in cs.CL, cs.LG, and stat.ML

Abstract: The Softmax function is used in the final layer of nearly all existing sequence-to-sequence models for language generation. However, it is usually the slowest layer to compute which limits the vocabulary size to a subset of most frequent types; and it has a large memory footprint. We propose a general technique for replacing the softmax layer with a continuous embedding layer. Our primary innovations are a novel probabilistic loss, and a training and inference procedure in which we generate a probability distribution over pre-trained word embeddings, instead of a multinomial distribution over the vocabulary obtained via softmax. We evaluate this new class of sequence-to-sequence models with continuous outputs on the task of neural machine translation. We show that our models obtain upto 2.5x speed-up in training time while performing on par with the state-of-the-art models in terms of translation quality. These models are capable of handling very large vocabularies without compromising on translation quality. They also produce more meaningful errors than in the softmax-based models, as these errors typically lie in a subspace of the vector space of the reference translations.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: