Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Bregman Clustering (1812.04356v3)

Published 11 Dec 2018 in math.ST, stat.ML, and stat.TH

Abstract: Using a trimming approach, we investigate a k-means type method based on Bregman divergences for clustering data possibly corrupted with clutter noise. The main interest of Bregman divergences is that the standard Lloyd algorithm adapts to these distortion measures, and they are well-suited for clustering data sampled according to mixture models from exponential families. We prove that there exists an optimal codebook, and that an empirically optimal codebook converges a.s. to an optimal codebook in the distortion sense. Moreover, we obtain the sub-Gaussian rate of convergence for k-means 1 $\sqrt$ n under mild tail assumptions. Also, we derive a Lloyd-type algorithm with a trimming parameter that can be selected from data according to some heuristic, and present some experimental results.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.