Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Transparent Boundary Conditions for the Time-Dependent Schrödinger Equation with a Vector Potential (1812.04200v2)

Published 11 Dec 2018 in math.NA and cs.NA

Abstract: We consider the problem of constructing transparent boundary conditions for the time-dependent Schr\"odinger equation with a compactly supported binding potential and, if desired, a spatially uniform, time-dependent electromagnetic vector potential. Such conditions prevent nonphysical boundary effects from corrupting a numerical solution in a bounded computational domain. We use ideas from potential theory to build exact nonlocal conditions for arbitrary piecewise-smooth domains. These generalize the standard Dirichlet-to-Neumann and Neumann-to-Dirichlet maps known for the equation in one dimension without a vector potential. When the vector potential is included, the condition becomes non-convolutional in time. For the one-dimensional problem, we propose a simple discretization scheme and a fast algorithm to accelerate the evaluation of the boundary condition.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.