Scale Selective Extended Local Binary Pattern for Texture Classification (1812.04174v1)
Abstract: In this paper, we propose a new texture descriptor, scale selective extended local binary pattern (SSELBP), to characterize texture images with scale variations. We first utilize multi-scale extended local binary patterns (ELBP) with rotation-invariant and uniform mappings to capture robust local micro- and macro-features. Then, we build a scale space using Gaussian filters and calculate the histogram of multi-scale ELBPs for the image at each scale. Finally, we select the maximum values from the corresponding bins of multi-scale ELBP histograms at different scales as scale-invariant features. A comprehensive evaluation on public texture databases (KTH-TIPS and UMD) shows that the proposed SSELBP has high accuracy comparable to state-of-the-art texture descriptors on gray-scale-, rotation-, and scale-invariant texture classification but uses only one-third of the feature dimension.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.