Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Computationally Efficient and Practically Feasible Two Microphones Blind Speech Separation Method (1812.03914v1)

Published 10 Dec 2018 in cs.SD and eess.AS

Abstract: Traditionally, Blind Speech Separation techniques are computationally expensive as they update the demixing matrix at every time frame index, making them impractical to use in many Real-Time applications. In this paper, a robust data-driven two-microphone sound source localization method is used as a criterion to reduce the computational complexity of the Independent Vector Analysis (IVA) Blind Speech Separation (BSS) method. IVA is used to separate convolutedly mixed speech and noise sources. The practical feasibility of the proposed method is proved by implementing it on a smartphone device to separate speech and noise in Real-World scenarios for Hearing-Aid applications. The experimental results with objective and subjective tests reveal the practical usability of the developed method in many real-world applications.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.