Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Facial Landmark Machines: A Backbone-Branches Architecture with Progressive Representation Learning (1812.03887v1)

Published 10 Dec 2018 in cs.CV

Abstract: Facial landmark localization plays a critical role in face recognition and analysis. In this paper, we propose a novel cascaded backbone-branches fully convolutional neural network~(BB-FCN) for rapidly and accurately localizing facial landmarks in unconstrained and cluttered settings. Our proposed BB-FCN generates facial landmark response maps directly from raw images without any preprocessing. BB-FCN follows a coarse-to-fine cascaded pipeline, which consists of a backbone network for roughly detecting the locations of all facial landmarks and one branch network for each type of detected landmark for further refining their locations. Furthermore, to facilitate the facial landmark localization under unconstrained settings, we propose a large-scale benchmark named SYSU16K, which contains 16000 faces with large variations in pose, expression, illumination and resolution. Extensive experimental evaluations demonstrate that our proposed BB-FCN can significantly outperform the state-of-the-art under both constrained (i.e., within detected facial regions only) and unconstrained settings. We further confirm that high-quality facial landmarks localized with our proposed network can also improve the precision and recall of face detection.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.