Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Embedding for Citation Recommendation (1812.03835v1)

Published 6 Dec 2018 in cs.IR, cs.DL, and cs.SI

Abstract: As science advances, the academic community has published millions of research papers. Researchers devote time and effort to search relevant manuscripts when writing a paper or simply to keep up with current research. In this paper, we consider the problem of citation recommendation on graph and propose a task-specific neighborhood construction strategy to learn the distributed representations of papers. In addition, given the learned representations, we investigate various schemes to rank the candidate papers for citation recommendation. The experimental results show our proposed neighborhood construction strategy outperforms the widely-used random walks based sampling strategy on all ranking schemes, and the model based ranking scheme outperforms embedding based rankings for both neighborhood construction strategies. We also demonstrated that graph embedding is a robust approach for citation recommendation when hidden ratio changes, while the performance of classic methods drop significantly when the set of seed papers is becoming small.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.