Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

3D Scene Parsing via Class-Wise Adaptation (1812.03622v2)

Published 10 Dec 2018 in cs.CV

Abstract: We propose the method that uses only computer graphics datasets to parse the real world 3D scenes. 3D scene parsing based on semantic segmentation is required to implement the categorical interaction in the virtual world. Convolutional Neural Networks (CNNs) have recently shown state-of-theart performance on computer vision tasks including semantic segmentation. However, collecting and annotating a huge amount of data are needed to train CNNs. Especially in the case of semantic segmentation, annotating pixel by pixel takes a significant amount of time and often makes mistakes. In contrast, computer graphics can generate a lot of accurate annotated data and easily scale up by changing camera positions, textures and lights. Despite these advantages, models trained on computer graphics datasets cannot perform well on real data, which is known as the domain shift. To address this issue, we first present that depth modal and synthetic noise are effective to reduce the domain shift. Then, we develop the class-wise adaptation which obtains domain invariant features of CNNs. To reduce the domain shift, we create computer graphics rooms with a lot of props, and provide photo-realistic rendered images.We also demonstrate the application which is combined semantic segmentation with Simultaneous Localization and Mapping (SLAM). Our application performs accurate 3D scene parsing in real-time on an actual room.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.