Papers
Topics
Authors
Recent
2000 character limit reached

Speech-Gesture Mapping and Engagement Evaluation in Human Robot Interaction (1812.03484v1)

Published 9 Dec 2018 in cs.RO and cs.HC

Abstract: A robot needs contextual awareness, effective speech production and complementing non-verbal gestures for successful communication in society. In this paper, we present our end-to-end system that tries to enhance the effectiveness of non-verbal gestures. For achieving this, we identified prominently used gestures in performances by TED speakers and mapped them to their corresponding speech context and modulated speech based upon the attention of the listener. The proposed method utilized Convolutional Pose Machine [4] to detect the human gesture. Dominant gestures of TED speakers were used for learning the gesture-to-speech mapping. The speeches by them were used for training the model. We also evaluated the engagement of the robot with people by conducting a social survey. The effectiveness of the performance was monitored by the robot and it self-improvised its speech pattern on the basis of the attention level of the audience, which was calculated using visual feedback from the camera. The effectiveness of interaction as well as the decisions made during improvisation was further evaluated based on the head-pose detection and interaction survey.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.