Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Neural Abstract Style Transfer for Chinese Traditional Painting (1812.03264v2)

Published 8 Dec 2018 in cs.CV

Abstract: Chinese traditional painting is one of the most historical artworks in the world. It is very popular in Eastern and Southeast Asia due to being aesthetically appealing. Compared with western artistic painting, it is usually more visually abstract and textureless. Recently, neural network based style transfer methods have shown promising and appealing results which are mainly focused on western painting. It remains a challenging problem to preserve abstraction in neural style transfer. In this paper, we present a Neural Abstract Style Transfer method for Chinese traditional painting. It learns to preserve abstraction and other style jointly end-to-end via a novel MXDoG-guided filter (Modified version of the eXtended Difference-of-Gaussians) and three fully differentiable loss terms. To the best of our knowledge, there is little work study on neural style transfer of Chinese traditional painting. To promote research on this direction, we collect a new dataset with diverse photo-realistic images and Chinese traditional paintings. In experiments, the proposed method shows more appealing stylized results in transferring the style of Chinese traditional painting than state-of-the-art neural style transfer methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.