Papers
Topics
Authors
Recent
2000 character limit reached

A biconvex analysis for Lasso l1 reweighting (1812.02990v1)

Published 7 Dec 2018 in cs.LG, math.OC, and stat.ML

Abstract: l1 reweighting algorithms are very popular in sparse signal recovery and compressed sensing, since in the practice they have been observed to outperform classical l1 methods. Nevertheless, the theoretical analysis of their convergence is a critical point, and generally is limited to the convergence of the functional to a local minimum or to subsequence convergence. In this letter, we propose a new convergence analysis of a Lasso l1 reweighting method, based on the observation that the algorithm is an alternated convex search for a biconvex problem. Based on that, we are able to prove the numerical convergence of the sequence of the iterates generated by the algorithm. This is not yet the convergence of the sequence, but it is close enough for practical and numerical purposes. Furthermore, we propose an alternative iterative soft thresholding procedure, which is faster than the main algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.