Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MIWAE: Deep Generative Modelling and Imputation of Incomplete Data (1812.02633v2)

Published 6 Dec 2018 in stat.ML, cs.LG, and stat.ME

Abstract: We consider the problem of handling missing data with deep latent variable models (DLVMs). First, we present a simple technique to train DLVMs when the training set contains missing-at-random data. Our approach, called MIWAE, is based on the importance-weighted autoencoder (IWAE), and maximises a potentially tight lower bound of the log-likelihood of the observed data. Compared to the original IWAE, our algorithm does not induce any additional computational overhead due to the missing data. We also develop Monte Carlo techniques for single and multiple imputation using a DLVM trained on an incomplete data set. We illustrate our approach by training a convolutional DLVM on a static binarisation of MNIST that contains 50% of missing pixels. Leveraging multiple imputation, a convolutional network trained on these incomplete digits has a test performance similar to one trained on complete data. On various continuous and binary data sets, we also show that MIWAE provides accurate single imputations, and is highly competitive with state-of-the-art methods.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.