Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reduced-Dimension Design of MIMO Over-the-Air Computing for Data Aggregation in Clustered IoT Networks (1812.02373v1)

Published 6 Dec 2018 in cs.IT, cs.NI, eess.SP, and math.IT

Abstract: One basic operation of Internet-of-Things (IoT) networks is aggregating distributed sensing-data over wireless-channels for function-computation, called wireless-data-aggregation (WDA). Targeting dense sensors, a recently developed technology called over-the-air computing (AirComp) can dramatically reduce the WDA latency by aggregating distributed data "over-the-air" using the waveform-superposition property of a multi-access channel. In this work, we design multiple-input-multiple-output (MIMO) AirComp for computing a vector-valued function in a clustered IoT network with multi-antenna sensors forming clusters and a multi-antenna access-point (AP) performing WDA. The resultant high-dimensional but low-rank MIMO channels makes it important to reduce channel or signal dimensionality in AirComp to avoid exposure to noise from channel null-spaces. Motivated by this, we develop a framework of reduced-dimension MIMO AirComp, featuring decomposed-aggregation-beamforming (DAB). Consider the case of separable channel-clusters with non-overlapping angle-of-arrival ranges. The optimal DAB has the structure where inner-components extract the dominant eigen-spaces of corresponding channel-clusters and outer-components jointly equalize the resultant low-dimensional channels. Consider the more complex case of inseparable clusters. We propose a suboptimal DAB design where the inner-component performs both dimension-reduction and joint-equalization over clustered-channel covariance matrices and the outer-component jointly equalizes the small-scale fading-channels. Furthermore, efficient algorithms for rank-optimization of individual DAB components and channel-feedback leveraging the AirComp principle are developed.

Citations (78)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube