Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Control-Theoretic Approach for Scalable and Robust Traffic Density Estimation using Convex Optimization (1812.02128v3)

Published 5 Dec 2018 in cs.SY and math.OC

Abstract: Monitoring and control of traffic networks represent alternative, inexpensive strategies to minimize traffic congestion. As the number of traffic sensors is naturally constrained by budgetary requirements, real-time estimation of traffic flow in road segments that are not equipped with sensors is of significant importance---thereby providing situational awareness and guiding real-time feedback control strategies. To that end, firstly we build a generalized traffic flow model for stretched highways with arbitrary number of ramp flows based on the Lighthill Whitham Richards (LWR) flow model. Secondly, we characterize the function set corresponding to the nonlinearities present in the LWR model, and use this characterization to design real-time and robust state estimators (SE) for stretched highway segments. Specifically, we show that the nonlinearities from the derived models are locally Lipschitz continuous by providing the analytical Lipschitz constants. Thirdly, the analytical derivation is then incorporated through a robust SE method given a limited number of traffic sensors, under the impact of process and measurement disturbances and unknown inputs. The estimator is based on deriving a convex semidefinite optimization problem. Finally, numerical tests are given showcasing the applicability, scalability, and robustness of the proposed estimator for large systems under high magnitude disturbances, parametric uncertainty, and unknown inputs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube