Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling (1812.02094v2)

Published 5 Dec 2018 in math.NA and cs.NA

Abstract: This work presents a model reduction approach for problems with coherent structures that propagate over time such as convection-dominated flows and wave-type phenomena. Traditional model reduction methods have difficulties with these transport-dominated problems because propagating coherent structures typically introduce high-dimensional features that require high-dimensional approximation spaces. The approach proposed in this work exploits the locality in space and time of propagating coherent structures to derive efficient reduced models. Full-model solutions are approximated locally in time via local reduced spaces that are adapted with basis updates during time stepping. The basis updates are derived from querying the full model at a few selected spatial coordinates. A core contribution of this work is an adaptive sampling scheme for selecting at which components to query the full model to compute basis updates. The presented analysis shows that, in probability, the more local the coherent structure is in space, the fewer full-model samples are required to adapt the reduced basis with the proposed adaptive sampling scheme. Numerical results on benchmark examples with interacting wave-type structures and time-varying transport speeds and on a model combustor of a single-element rocket engine demonstrate the wide applicability of the proposed approach and runtime speedups of up to one order of magnitude compared to full models and traditional reduced models.

Citations (120)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.