Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Low-Complexity Data-Parallel Earth Mover's Distance Approximations (1812.02091v2)

Published 5 Dec 2018 in cs.LG, cs.IR, and stat.ML

Abstract: The Earth Mover's Distance (EMD) is a state-of-the art metric for comparing discrete probability distributions, but its high distinguishability comes at a high cost in computational complexity. Even though linear-complexity approximation algorithms have been proposed to improve its scalability, these algorithms are either limited to vector spaces with only a few dimensions or they become ineffective when the degree of overlap between the probability distributions is high. We propose novel approximation algorithms that overcome both of these limitations, yet still achieve linear time complexity. All our algorithms are data parallel, and thus, we take advantage of massively parallel computing engines, such as Graphics Processing Units (GPUs). On the popular text-based 20 Newsgroups dataset, the new algorithms are four orders of magnitude faster than a multi-threaded CPU implementation of Word Mover's Distance and match its nearest-neighbors-search accuracy. On MNIST images, the new algorithms are four orders of magnitude faster than a GPU implementation of the Sinkhorn's algorithm while offering a slightly higher nearest-neighbors-search accuracy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.