Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Domain-Adaptive Single-View 3D Reconstruction (1812.01742v2)

Published 4 Dec 2018 in cs.CV

Abstract: Single-view 3D shape reconstruction is an important but challenging problem, mainly for two reasons. First, as shape annotation is very expensive to acquire, current methods rely on synthetic data, in which ground-truth 3D annotation is easy to obtain. However, this results in domain adaptation problem when applied to natural images. The second challenge is that there are multiple shapes that can explain a given 2D image. In this paper, we propose a framework to improve over these challenges using adversarial training. On one hand, we impose domain confusion between natural and synthetic image representations to reduce the distribution gap. On the other hand, we impose the reconstruction to be `realistic' by forcing it to lie on a (learned) manifold of realistic object shapes. Our experiments show that these constraints improve performance by a large margin over baseline reconstruction models. We achieve results competitive with the state of the art with a much simpler architecture.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.