Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Domain Mismatch Robust Acoustic Scene Classification using Channel Information Conversion (1812.01731v1)

Published 4 Dec 2018 in cs.SD and eess.AS

Abstract: In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized hierarchical variational autoencoder. Proposed method adapts both the source and target domain to a pre-defined specific domain. Unlike the conventional approach, the relationship between the target and source domain and information of each domain are not required in the adaptation process. Based on the experimental results using the IEEE detection and classification of acoustic scenes and event 2018 task 1-B dataset and the baseline system, it is shown that the proposed approach can mitigate the channel mismatching issue of different recording devices.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)