Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Graph-CNN for 3D Point Cloud Classification (1812.01711v1)

Published 28 Nov 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Graph convolutional neural networks (Graph-CNNs) extend traditional CNNs to handle data that is supported on a graph. Major challenges when working with data on graphs are that the support set (the vertices of the graph) do not typically have a natural ordering, and in general, the topology of the graph is not regular (i.e., vertices do not all have the same number of neighbors). Thus, Graph-CNNs have huge potential to deal with 3D point cloud data which has been obtained from sampling a manifold. In this paper, we develop a Graph-CNN for classifying 3D point cloud data, called PointGCN. The architecture combines localized graph convolutions with two types of graph downsampling operations (also known as pooling). By the effective exploration of the point cloud local structure using the Graph-CNN, the proposed architecture achieves competitive performance on the 3D object classification benchmark ModelNet, and our architecture is more stable than competing schemes.

Citations (152)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.