Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From biological vision to unsupervised hierarchical sparse coding (1812.01335v1)

Published 4 Dec 2018 in cs.CV

Abstract: The formation of connections between neural cells is emerging essentially from an unsupervised learning process. For instance, during the development of the primary visual cortex of mammals (V1), we observe the emergence of cells selective to localized and oriented features. This leads to the development of a rough contour-based representation of the retinal image in area V1. We propose a biological model of the formation of this representation along the thalamo-cortical pathway. To achieve this goal, we replicated the Multi-Layer Convolutional Sparse Coding (ML-CSC) algorithm developed by Michael Elad's group.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.