Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FaceFeat-GAN: a Two-Stage Approach for Identity-Preserving Face Synthesis (1812.01288v1)

Published 4 Dec 2018 in cs.CV

Abstract: The advance of Generative Adversarial Networks (GANs) enables realistic face image synthesis. However, synthesizing face images that preserve facial identity as well as have high diversity within each identity remains challenging. To address this problem, we present FaceFeat-GAN, a novel generative model that improves both image quality and diversity by using two stages. Unlike existing single-stage models that map random noise to image directly, our two-stage synthesis includes the first stage of diverse feature generation and the second stage of feature-to-image rendering. The competitions between generators and discriminators are carefully designed in both stages with different objective functions. Specially, in the first stage, they compete in the feature domain to synthesize various facial features rather than images. In the second stage, they compete in the image domain to render photo-realistic images that contain high diversity but preserve identity. Extensive experiments show that FaceFeat-GAN generates images that not only retain identity information but also have high diversity and quality, significantly outperforming previous methods.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.