Emergent Mind

Conditional Video Generation Using Action-Appearance Captions

(1812.01261)
Published Dec 4, 2018 in cs.CV

Abstract

The field of automatic video generation has received a boost thanks to the recent Generative Adversarial Networks (GANs). However, most existing methods cannot control the contents of the generated video using a text caption, losing their usefulness to a large extent. This particularly affects human videos due to their great variety of actions and appearances. This paper presents Conditional Flow and Texture GAN (CFT-GAN), a GAN-based video generation method from action-appearance captions. We propose a novel way of generating video by encoding a caption (e.g., "a man in blue jeans is playing golf") in a two-stage generation pipeline. Our CFT-GAN uses such caption to generate an optical flow (action) and a texture (appearance) for each frame. As a result, the output video reflects the content specified in the caption in a plausible way. Moreover, to train our method, we constructed a new dataset for human video generation with captions. We evaluated the proposed method qualitatively and quantitatively via an ablation study and a user study. The results demonstrate that CFT-GAN is able to successfully generate videos containing the action and appearances indicated in the captions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.