Time-Sequence Channel Inference for Beam Alignment in Vehicular Networks (1812.01220v1)
Abstract: In this paper, we propose a learning-based low-overhead beam alignment method for vehicle-to-infrastructure communication in vehicular networks. The main idea is to remotely infer the optimal beam directions at a target base station in future time slots, based on the CSI of a source base station in previous time slots. The proposed scheme can reduce channel acquisition and beam training overhead by replacing pilot-aided beam training with online inference from a sequence-to-sequence neural network. Simulation results based on ray-tracing channel data show that our proposed scheme achieves a $8.86\%$ improvement over location-based beamforming schemes with a positioning error of $1$m, and is within a $4.93\%$ performance loss compared with the genie-aided optimal beamformer.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.