Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Disentangling Latent Hands for Image Synthesis and Pose Estimation (1812.01002v2)

Published 3 Dec 2018 in cs.CV

Abstract: Hand image synthesis and pose estimation from RGB images are both highly challenging tasks due to the large discrepancy between factors of variation ranging from image background content to camera viewpoint. To better analyze these factors of variation, we propose the use of disentangled representations and a disentangled variational autoencoder (dVAE) that allows for specific sampling and inference of these factors. The derived objective from the variational lower bound as well as the proposed training strategy are highly flexible, allowing us to handle cross-modal encoders and decoders as well as semi-supervised learning scenarios. Experiments show that our dVAE can synthesize highly realistic images of the hand specifiable by both pose and image background content and also estimate 3D hand poses from RGB images with accuracy competitive with state-of-the-art on two public benchmarks.

Citations (113)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)