Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Big in Japan: Regularizing networks for solving inverse problems (1812.00965v4)

Published 3 Dec 2018 in math.NA and cs.NA

Abstract: Deep learning and (deep) neural networks are emerging tools to address inverse problems and image reconstruction tasks. Despite outstanding performance, the mathematical analysis for solving inverse problems by neural networks is mostly missing. In this paper, we introduce and rigorously analyze families of deep regularizing neural networks (RegNets) of the form $B_\alpha + N_{\theta(\alpha)} B_\alpha $, where $B_\alpha$ is a classical regularization and the network $N_{\theta(\alpha)} B_\alpha $ is trained to recover the missing part $\operatorname{Id}X - B\alpha$ not found by the classical regularization. We show that these regularizing networks yield a convergent regularization method for solving inverse problems. Additionally, we derive convergence rates (quantitative error estimates) assuming a sufficient decay of the associated distance function. We demonstrate that our results recover existing convergence and convergence rates results for filter-based regularization methods as well as the recently introduced null space network as special cases. Numerical results are presented for a tomographic sparse data problem, which clearly demonstrate that the proposed RegNets improve the classical regularization as well as the null space network.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.