Papers
Topics
Authors
Recent
2000 character limit reached

Early Prediction of Course Grades: Models and Feature Selection (1812.00843v1)

Published 3 Dec 2018 in cs.AI and cs.LG

Abstract: In this paper, we compare predictive models for students' final performance in a blended course using a set of generic features collected from the first six weeks of class. These features were extracted from students' online homework submission logs as well as other online actions. We compare the effectiveness of 5 different ML algorithms (SVMs, Support Vector Regression, Decision Tree, Naive Bayes and K-Nearest Neighbor). We found that SVMs outperform other models and improve when compared to the baseline. This study demonstrates feasible implementations for predictive models that rely on common data from blended courses that can be used to monitor students' progress and to tailor instruction.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.