Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Novel Quality Metric for Duration Variability Compensation in Speaker Verification using i-Vectors (1812.00828v1)

Published 3 Dec 2018 in cs.MM and cs.CV

Abstract: Automatic speaker verification (ASV) is the process to recognize persons using voice as biometric. The ASV systems show considerable recognition performance with sufficient amount of speech from matched condition. One of the crucial challenges of ASV technology is to improve recognition performance with speech segments of short duration. In short duration condition, the model parameters are not properly estimated due to inadequate speech information, and this results poor recognition accuracy even with the state-of-the-art i-vector based ASV system. We hypothesize that considering the estimation quality during recognition process would help to improve the ASV performance. This can be incorporated as a quality measure during fusion of ASV systems. This paper investigates a new quality measure for i-vector representation of speech utterances computed directly from Baum-Welch statistics. The proposed metric is subsequently used as quality measure during fusion of ASV systems. In experiments with the NIST SRE 2008 corpus, We have shown that inclusion of proposed quality metric exhibits considerable improvement in speaker verification performance. The results also indicate the potentiality of the proposed method in real-world scenario with short test utterances.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.