Metric mean dimension and analog compression (1812.00458v3)
Abstract: Wu and Verd\'u developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions. We obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-distortion dimension rates and study several examples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.