Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards Robust Lung Segmentation in Chest Radiographs with Deep Learning (1811.12638v1)

Published 30 Nov 2018 in cs.CV

Abstract: Automated segmentation of Lungs plays a crucial role in the computer-aided diagnosis of chest X-Ray (CXR) images. Developing an efficient Lung segmentation model is challenging because of difficulties such as the presence of several edges at the rib cage and clavicle, inconsistent lung shape among different individuals, and the appearance of the lung apex. In this paper, we propose a robust model for Lung segmentation in Chest Radiographs. Our model learns to ignore the irrelevant regions in an input Chest Radiograph while highlighting regions useful for lung segmentation. The proposed model is evaluated on two public chest X-Ray datasets (Montgomery County, MD, USA, and Shenzhen No. 3 People's Hospital in China). The experimental result with a DICE score of 98.6% demonstrates the robustness of our proposed lung segmentation approach.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.