Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regression and Classification by Zonal Kriging (1811.12507v2)

Published 29 Nov 2018 in stat.ML and cs.LG

Abstract: Consider a family $Z={\boldsymbol{x_{i}},y_{i}$,$1\leq i\leq N}$ of $N$ pairs of vectors $\boldsymbol{x_{i}} \in \mathbb{R}d$ and scalars $y_{i}$ that we aim to predict for a new sample vector $\mathbf{x}0$. Kriging models $y$ as a sum of a deterministic function $m$, a drift which depends on the point $\boldsymbol{x}$, and a random function $z$ with zero mean. The zonality hypothesis interprets $y$ as a weighted sum of $d$ random functions of a single independent variables, each of which is a kriging, with a quadratic form for the variograms drift. We can therefore construct an unbiased estimator $y{*}(\boldsymbol{x{0}})=\sum_{i}\lambda{i}z(\boldsymbol{x_{i}})$ de $y(\boldsymbol{x_{0}})$ with minimal variance $E[y{*}(\boldsymbol{x_{0}})-y(\boldsymbol{x_{0}})]{2}$, with the help of the known training set points. We give the explicitly closed form for $\lambda{i}$ without having calculated the inverse of the matrices.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.