Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Multiclass Multiple Instance Learning Method with Exact Likelihood (1811.12346v2)

Published 29 Nov 2018 in stat.ML and cs.LG

Abstract: We study a multiclass multiple instance learning (MIL) problem where the labels only suggest whether any instance of a class exists or does not exist in a training sample or example. No further information, e.g., the number of instances of each class, relative locations or orders of all instances in a training sample, is exploited. Such a weak supervision learning problem can be exactly solved by maximizing the model likelihood fitting given observations, and finds applications to tasks like multiple object detection and localization for image understanding. We discuss its relationship to the classic classification problem, the traditional MIL, and connectionist temporal classification (CTC). We use image recognition as the example task to develop our method, although it is applicable to data with higher or lower dimensions without much modification. Experimental results show that our method can be used to learn all convolutional neural networks for solving real-world multiple object detection and localization tasks with weak annotations, e.g., transcribing house number sequences from the Google street view imagery dataset.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube