Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single-view Object Shape Reconstruction Using Deep Shape Prior and Silhouette

Published 29 Nov 2018 in cs.CV | (1811.11921v2)

Abstract: 3D shape reconstruction from a single image is a highly ill-posed problem. Modern deep learning based systems try to solve this problem by learning an end-to-end mapping from image to shape via a deep network. In this paper, we aim to solve this problem via an online optimization framework inspired by traditional methods. Our framework employs a deep autoencoder to learn a set of latent codes of 3D object shapes, which are fitted by a probabilistic shape prior using Gaussian Mixture Model (GMM). At inference, the shape and pose are jointly optimized guided by both image cues and deep shape prior without relying on an initialization from any trained deep nets. Surprisingly, our method achieves comparable performance to state-of-the-art methods even without training an end-to-end network, which shows a promising step in this direction.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.