Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Single-view Object Shape Reconstruction Using Deep Shape Prior and Silhouette (1811.11921v2)

Published 29 Nov 2018 in cs.CV

Abstract: 3D shape reconstruction from a single image is a highly ill-posed problem. Modern deep learning based systems try to solve this problem by learning an end-to-end mapping from image to shape via a deep network. In this paper, we aim to solve this problem via an online optimization framework inspired by traditional methods. Our framework employs a deep autoencoder to learn a set of latent codes of 3D object shapes, which are fitted by a probabilistic shape prior using Gaussian Mixture Model (GMM). At inference, the shape and pose are jointly optimized guided by both image cues and deep shape prior without relying on an initialization from any trained deep nets. Surprisingly, our method achieves comparable performance to state-of-the-art methods even without training an end-to-end network, which shows a promising step in this direction.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.