Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Identity Preserving Generative Adversarial Network for Cross-Domain Person Re-identification (1811.11510v1)

Published 28 Nov 2018 in cs.CV

Abstract: Person re-identification is to retrieval pedestrian images from no-overlap camera views detected by pedestrian detectors. Most existing person re-identification (re-ID) models often fail to generalize well from the source domain where the models are trained to a new target domain without labels, because of the bias between the source and target domain. This issue significantly limits the scalability and usability of the models in the real world. Providing a labeled source training set and an unlabeled target training set, the aim of this paper is to improve the generalization ability of re-ID models to the target domain. To this end, we propose an image generative network named identity preserving generative adversarial network (IPGAN). The proposed method has two excellent properties: 1) only a single model is employed to translate the labeled images from the source domain to the target camera domains in an unsupervised manner; 2) The identity information of images from the source domain is preserved before and after translation. Furthermore, we propose IBN-reID model for the person re-identification task. It has better generalization ability than baseline models, especially in the cases without any domain adaptation. The IBN-reID model is trained on the translated images by supervised methods. Experimental results on Market-1501 and DukeMTMC-reID show that the images generated by IPGAN are more suitable for cross-domain person re-identification. Very competitive re-ID accuracy is achieved by our method.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube