Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fully Discrete Positivity-Preserving and Energy-Dissipating Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure (1811.11502v5)

Published 28 Nov 2018 in math.NA, cs.NA, and math.AP

Abstract: We propose fully discrete, implicit-in-time finite-volume schemes for a general family of non-linear and non-local Fokker-Planck equations with a gradient-flow structure, usually known as aggregation-diffusion equations, in any dimension. The schemes enjoy the positivity-preservation and energy-dissipation properties, essential for their practical use. The first-order scheme verifies these properties unconditionally for general non-linear diffusions and interaction potentials, while the second-order scheme does so provided a CFL condition holds. Sweeping dimensional splitting permits the efficient construction of these schemes in higher dimensions while preserving their structural properties. Numerical experiments validate the schemes and show their ability to handle complicated phenomena typical in aggregation-diffusion equations, such as free boundaries, metastability, merging and phase transitions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.