Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A randomized gradient-free attack on ReLU networks (1811.11493v1)

Published 28 Nov 2018 in cs.LG, cs.CR, and stat.ML

Abstract: It has recently been shown that neural networks but also other classifiers are vulnerable to so called adversarial attacks e.g. in object recognition an almost non-perceivable change of the image changes the decision of the classifier. Relatively fast heuristics have been proposed to produce these adversarial inputs but the problem of finding the optimal adversarial input, that is with the minimal change of the input, is NP-hard. While methods based on mixed-integer optimization which find the optimal adversarial input have been developed, they do not scale to large networks. Currently, the attack scheme proposed by Carlini and Wagner is considered to produce the best adversarial inputs. In this paper we propose a new attack scheme for the class of ReLU networks based on a direct optimization on the resulting linear regions. In our experimental validation we improve in all except one experiment out of 18 over the Carlini-Wagner attack with a relative improvement of up to 9\%. As our approach is based on the geometrical structure of ReLU networks, it is less susceptible to defences targeting their functional properties.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.