Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrowdCam: Dynamic Region Segmentation (1811.11455v2)

Published 28 Nov 2018 in cs.CV

Abstract: We consider the problem of segmenting dynamic regions in CrowdCam images, where a dynamic region is the projection of a moving 3D object on the image plane. Quite often, these regions are the most interesting parts of an image. CrowdCam images is a set of images of the same dynamic event, captured by a group of non-collaborating users. Almost every event of interest today is captured this way. This new type of images raises the need to develop new algorithms tailored specifically for it. We propose a comprehensive solution to the problem. Our solution combines cues that are based on geometry, appearance and proximity. First, geometric reasoning is used to produce rough score maps that determine, for every pixel, how likely it is to be the projection of a static or dynamic scene point. These maps are noisy because CrowdCam images are usually few and far apart both in space and in time. Then, we use similarity in appearance space and proximity in the image plane to encourage neighboring pixels to be labeled similarly as either static or dynamic. We collected a new, and challenging, data set to evaluate our algorithm. Results show that the success score of our algorithm is nearly double that of the current state of the art approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nir Zarrabi (1 paper)
  2. Shai Avidan (46 papers)
  3. Yael Moses (5 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.