Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

First-order Newton-type Estimator for Distributed Estimation and Inference (1811.11368v2)

Published 28 Nov 2018 in stat.ML, cs.LG, and stat.ME

Abstract: This paper studies distributed estimation and inference for a general statistical problem with a convex loss that could be non-differentiable. For the purpose of efficient computation, we restrict ourselves to stochastic first-order optimization, which enjoys low per-iteration complexity. To motivate the proposed method, we first investigate the theoretical properties of a straightforward Divide-and-Conquer Stochastic Gradient Descent (DC-SGD) approach. Our theory shows that there is a restriction on the number of machines and this restriction becomes more stringent when the dimension $p$ is large. To overcome this limitation, this paper proposes a new multi-round distributed estimation procedure that approximates the Newton step only using stochastic subgradient. The key component in our method is the proposal of a computationally efficient estimator of $\Sigma{-1} w$, where $\Sigma$ is the population Hessian matrix and $w$ is any given vector. Instead of estimating $\Sigma$ (or $\Sigma{-1}$) that usually requires the second-order differentiability of the loss, the proposed First-Order Newton-type Estimator (FONE) directly estimates the vector of interest $\Sigma{-1} w$ as a whole and is applicable to non-differentiable losses. Our estimator also facilitates the inference for the empirical risk minimizer. It turns out that the key term in the limiting covariance has the form of $\Sigma{-1} w$, which can be estimated by FONE.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.