Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-label classification search space in the MEKA software (1811.11353v5)

Published 28 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: This supplementary material aims to describe the proposed multi-label classification (MLC) search spaces based on the MEKA and WEKA softwares. First, we overview 26 MLC algorithms and meta-algorithms in MEKA, presenting their main characteristics, such as hyper-parameters, dependencies and constraints. Second, we review 28 single-label classification (SLC) algorithms, preprocessing algorithms and meta-algorithms in the WEKA software. These SLC algorithms were also studied because they are part of the proposed MLC search spaces. Fundamentally, this occurs due to the problem transformation nature of several MLC algorithms used in this work. These algorithms transform an MLC problem into one or several SLC problems in the first place and solve them with SLC model(s) in a next step. Therefore, understanding their main characteristics is crucial to this work. Finally, we present a formal description of the search spaces by proposing a context-free grammar that encompasses the 54 learning algorithms. This grammar basically comprehends the possible combinations, the constraints and dependencies among the learning algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.