Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection (1811.11318v2)

Published 28 Nov 2018 in cs.CV

Abstract: In this paper, we propose a novel object detection algorithm named "Deep Regionlets" by integrating deep neural networks and a conventional detection schema for accurate generic object detection. Motivated by the effectiveness of regionlets for modeling object deformations and multiple aspect ratios, we incorporate regionlets into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network provides guidance on where to select sub-regions from which features can be learned from. An object proposal typically contains 3-16 sub-regions. The regionlet learning module focuses on local feature selection and transformations to alleviate the effects of appearance variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we design a "gating network" within the regionlet leaning module to enable instance dependent soft feature selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We present ablation studies and extensive experiments on the PASCAL VOC dataset and the Microsoft COCO dataset. The proposed method yields competitive performance over state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.