Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adventures in Formalisation: Financial Contracts, Modules, and Two-Level Type Theory (1811.11317v1)

Published 28 Nov 2018 in cs.PL

Abstract: We present three projects concerned with applications of proof assistants in the area of programming language theory and mathematics. The first project is about a certified compilation technique for a domain-specific programming language for financial contracts (the CL language). The code in CL is translated into a simple expression language well-suited for integration with software components implementing Monte Carlo simulation techniques (pricing engines). The compilation procedure is accompanied with formal proofs of correctness carried out in Coq. The second project presents techniques that allow for formal reasoning with nested and mutually inductive structures built up from finite maps and sets. The techniques, which build on the theory of nominal sets combined with the ability to work with isomorphic representations of finite maps, make it possible to give a formal treatment, in Coq, of a higher-order module system, including the ability to eliminate at compile time abstraction barriers introduced by the module system. The development is based on earlier work on static interpretation of modules and provides the foundation for a higher-order module language for Futhark, an optimising compiler targeting data-parallel architectures. The third project presents an implementation of two-level type theory, a version of Martin-Lof type theory with two equality types: the first acts as the usual equality of homotopy type theory, while the second allows us to reason about strict equality. In this system, we can formalise results of partially meta-theoretic nature. We develop and explore in details how two-level type theory can be implemented in a proof assistant, providing a prototype implementation in the proof assistant Lean. We demonstrate an application of two-level type theory by developing some results on the theory of inverse diagrams using our Lean implementation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.