Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Emerging Edge Computing Technologies for Distributed Internet of Things (IoT) Systems (1811.11268v1)

Published 26 Oct 2018 in cs.NI

Abstract: The ever-increasing growth in the number of connected smart devices and various Internet of Things (IoT) verticals is leading to a crucial challenge of handling massive amount of raw data generated from distributed IoT systems and providing real-time feedback to the end-users. Although existing cloud-computing paradigm has an enormous amount of virtual computing power and storage capacity, it is not suitable for latency-sensitive applications and distributed systems due to the involved latency and its centralized mode of operation. To this end, edge/fog computing has recently emerged as the next generation of computing systems for extending cloud-computing functions to the edges of the network. Despite several benefits of edge computing such as geo-distribution, mobility support and location awareness, various communication and computing related challenges need to be addressed in realizing edge computing technologies for future IoT systems. In this regard, this paper provides a holistic view on the current issues and effective solutions by classifying the emerging technologies in regard to the joint coordination of radio and computing resources, system optimization and intelligent resource management. Furthermore, an optimization framework for edge-IoT systems is proposed to enhance various performance metrics such as throughput, delay, resource utilization and energy consumption. Finally, a Machine Learning (ML) based case study is presented along with some numerical results to illustrate the significance of edge computing.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.