Grammars and reinforcement learning for molecule optimization (1811.11222v1)
Abstract: We seek to automate the design of molecules based on specific chemical properties. Our primary contributions are a simpler method for generating SMILES strings guaranteed to be chemically valid, using a combination of a new context-free grammar for SMILES and additional masking logic; and casting the molecular property optimization as a reinforcement learning problem, specifically best-of-batch policy gradient applied to a Transformer model architecture. This approach uses substantially fewer model steps per atom than earlier approaches, thus enabling generation of larger molecules, and beats previous state-of-the art baselines by a significant margin. Applying reinforcement learning to a combination of a custom context-free grammar with additional masking to enforce non-local constraints is applicable to any optimization of a graph structure under a mixture of local and nonlocal constraints.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.