Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Class-Distinct and Class-Mutual Image Generation with GANs (1811.11163v2)

Published 27 Nov 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Class-conditional extensions of generative adversarial networks (GANs), such as auxiliary classifier GAN (AC-GAN) and conditional GAN (cGAN), have garnered attention owing to their ability to decompose representations into class labels and other factors and to boost the training stability. However, a limitation is that they assume that each class is separable and ignore the relationship between classes even though class overlapping frequently occurs in a real-world scenario when data are collected on the basis of diverse or ambiguous criteria. To overcome this limitation, we address a novel problem called class-distinct and class-mutual image generation, in which the goal is to construct a generator that can capture between-class relationships and generate an image selectively conditioned on the class specificity. To solve this problem without additional supervision, we propose classifier's posterior GAN (CP-GAN), in which we redesign the generator input and the objective function of AC-GAN for class-overlapping data. Precisely, we incorporate the classifier's posterior into the generator input and optimize the generator so that the classifier's posterior of generated data corresponds with that of real data. We demonstrate the effectiveness of CP-GAN using both controlled and real-world class-overlapping data with a model configuration analysis and comparative study. Our code is available at https://github.com/takuhirok/CP-GAN/.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.