Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Structure of Optimal Private Tests for Simple Hypotheses (1811.11148v2)

Published 27 Nov 2018 in cs.DS, cs.CR, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Hypothesis testing plays a central role in statistical inference, and is used in many settings where privacy concerns are paramount. This work answers a basic question about privately testing simple hypotheses: given two distributions $P$ and $Q$, and a privacy level $\varepsilon$, how many i.i.d. samples are needed to distinguish $P$ from $Q$ subject to $\varepsilon$-differential privacy, and what sort of tests have optimal sample complexity? Specifically, we characterize this sample complexity up to constant factors in terms of the structure of $P$ and $Q$ and the privacy level $\varepsilon$, and show that this sample complexity is achieved by a certain randomized and clamped variant of the log-likelihood ratio test. Our result is an analogue of the classical Neyman-Pearson lemma in the setting of private hypothesis testing. We also give an application of our result to the private change-point detection. Our characterization applies more generally to hypothesis tests satisfying essentially any notion of algorithmic stability, which is known to imply strong generalization bounds in adaptive data analysis, and thus our results have applications even when privacy is not a primary concern.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.