Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus (1811.11143v2)

Published 27 Nov 2018 in math.NA and cs.NA

Abstract: In this paper, we present several new a posteriori error estimators and two adaptive mixed finite element methods \textsf{AMFEM1} and \textsf{AMFEM2} for the Hodge Laplacian problem in finite element exterior calculus. We prove that \textsf{AMFEM1} and \textsf{AMFEM2} are both convergent starting from any initial coarse mesh. A suitably defined quasi error is crucial to the convergence analysis. In addition, we prove the optimality of \textsf{AMFEM2}. The main technical contribution is a localized discrete upper bound. As opposed to existing literature, our results work on Lipschitz domains with nontrivial cohomology and provide the first norm convergence and optimality results.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)