Papers
Topics
Authors
Recent
2000 character limit reached

Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus (1811.11143v2)

Published 27 Nov 2018 in math.NA and cs.NA

Abstract: In this paper, we present several new a posteriori error estimators and two adaptive mixed finite element methods \textsf{AMFEM1} and \textsf{AMFEM2} for the Hodge Laplacian problem in finite element exterior calculus. We prove that \textsf{AMFEM1} and \textsf{AMFEM2} are both convergent starting from any initial coarse mesh. A suitably defined quasi error is crucial to the convergence analysis. In addition, we prove the optimality of \textsf{AMFEM2}. The main technical contribution is a localized discrete upper bound. As opposed to existing literature, our results work on Lipschitz domains with nontrivial cohomology and provide the first norm convergence and optimality results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.